ECE 4401 (Fall 2014)
Lab 7 —Keyboard & SRAM Integration

The goal of this lab is to leverage lab5 and lab6 and create a system that can write text entered via PS/2
keyboard to the 7-segment LED display. You will create a module that will take input from the PS/2 keyboard
and then write to a dedicated region in the SRAM memory. You will also create a separate module to read
from the dedicated region of SRAM memory and display it on the 7-sement LED through the display module.

The SRAM memory region will mimic the 8-entry buffer from lab5. However, no shifting of memory contents is
involved. The writer will start writing to SRAM at address x”000000” and increment by 4 for the next write. The
buffer will be fixed to 8 entries, therefore, the writer needs to wrap around and start writing at address
x”000000” once it has reached the end. The current location written to will be tracked by storing the address
in the “head” register. The contents of only those 4 memory locations are retrieved that were written to most
recently. For example, if one writes to buffer entry-0, entry-1, entry-2, entry-3, entry-4, and entry-5, only the
last 4 memory locations (entry-2, entry-3, entry-4, and entry-5) will be read out and displayed.

Interrupt (IRQ) I scancode([7:0]
Slave <
Master «> scancode_available| (PS/2)
(PS/2) |
(PS/2 Reader & |e—s N
SRAM writer) «—>) Slave < > SRAM
Wishbone (SRAM Interface)
Master L -—> Slave
(SRAM reader ([e—> (LED Display)
& LED Display)

The wb_kb_read_sram_write will wait for the interrupt from the keyboard interface module. Upon getting an
interrupt, it will assert the cyc_o and stb_o signals to read the scancode data from the wb_ps2 kb module.
When it gets the scancode, it will then pass that to the scancode2ascii module to convert it to an ASCII code. It
will then send this ASCII value to the SRAM interface. This module will keep track of which memory location it
is writing to by storing the memory location in a register, called “head”. It will increment this address by 4, if
the key pressed is not backspace. If the backspace key is pressed, it will clear out that memory location it last
wrote to by writing x”20” to it, and decrement the “head” pointer by 4. This module will write in a range of
memory addresses and then wrap around when it reaches the end. The starting address of this memory range
is x”000000” and the last address is x”00001C”. Rest of the addresses are increments of 4 (x”000004,
x”000008” ...). This mimics an 8 entry circular buffer.

The wb_sram_read_segled_write will continuously try to acquire the wishbone bus. Once it has control of the
bus, it will read out the last 4 memory locations (4 separate accesses) that were written to. This module starts
the first access from the address pointed to by the head pointer, and then decrements that address by 4 for
the subsequent accesses. This module keeps on storing the returned value in a local register. Once it has all the
data, it sends that data (32 bits) to the display module. The display module is hard coded to display the most
significant 8 bits on the left-most 7-segment LED display and the least significant 8 bits on the right-most 7-
segment LED display.



The whb_kb_read_sram_write module should initially take control of the bus by asserting cyc_o
(wb_sram_read_segled_write should delay asserting its cyc_o by 1 cycle). It gives up the bus by de-asserting
cyc_o for 1 cycle, after it is done writing to the appropriate location in the SRAM. At this point the
wb_sram_read_segled_write will take control of the bus and perform 4 SRAM read operations, and store the
returned ASClI value in a register. It will then send this data to the display module and give up the bus.

Notes:

1- Most of the code is either provided or being reused from lab5 and lab6. You can use the exact
functionality of your keyboard state machine in wb_kb_read_sram_write, and instead of sending it to
the display module you now send it to the SRAM (lab6 SRAM writer functionality). Similarly, you can
reuse the SRAM reader functionality form lab6 in wb_sram_read_segled_write.

2- You need to make sure that the wb_kb_read_sram_write takes control of the bus. It can be achieved
by asserting cyc_o on reset while de-asserting cyc_o on reset in wb_sram_read_segled_write.

3- You need to make sure that the wb_kb_read_sram_write module gives up the bus for 1 cycle to give a
chance to the other master to get control of the bus. This can be achieved by de-asserting cyc_oin a
state after the write to SRAM has finished.

4- The wb_kb_read_sram_write module needs to clear out the 8 entry buffer by writing x”02” to each
address at the very beginning. This needs to be done so that we don’t have any garbage values being
displayed. This can be achieved by going to a state after reset and performing the 8 writes and then
moving on to the main states, never coming back to this state.

0x000000
0x000004 4_ Read 4
0x000008 4— Read 3

0x00000C <_ Read 2

H—ea‘ 0x000010 <— Read 1

0x000014

0x000018

0x00001C




