ECE 4401 (Fall 2014)
Lab 6 — SRAM Interface

For this week’s lab, you will need to create three new Wishbone modules —a memory writer, a memory reader,
and extend the provided SRAM interface module.

Master — ¢ 3 Slave ¢ SRAM
(SRAM writer) (SRAM Interface)
Wishbone
Master Bus
(SRAM reader «—> Slave
; «—>
& LED Display) (LED Display)

The SRAM interface will translate requests from the Wishbone bus and present them to SRAM memory. The
SRAM is organized as 8 million words of 16-bits each. Thus, the total amount of available SRAM memory is 16
mega bytes. The SRAM is addressed by a 23-bit address bus (MemAdr(23 downto 1)) and a 16-bit data bus
(MemDB(15 downto 0)). RamcCS enables the SRAM, and the RamUB and the RamLB bits are used to select the
upper or lower bytes of the 16-bit word. In addition, MemWR is used to indicate a write and MemOE is used to
indicate a read. Note that all control signals are active low. The SRAM can be operated in a variety of modes that
are controlled by the RamAdv, RamClk, and RamCRE signals. These should all be set to “0”. Since the internal
Wishbone data bus is 32-bits wide, the SRAM interface will need to read and write the SRAM in two transactions.
Pages 13-14 of the FPGA board manual (http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf) have
more details on the organization of the SRAM.

The memory chips that are used are the Micron MT45W8MW 16 70ns SRAMs. In summary, when doing a read, the
data is available 70ns after the address lines have settled. For a write, the address must be stable for 70ns before
the write is complete and the data must be stable for 20ns before you can change the data. Since the FPGA is
running at 50 MHz (20ns period), the SRAM interface must be extended to insert appropriate wait states when
doing a read or write.

The SRAM interface will communicate with the bus and the physical SRAM. You will extend the provided module
by designing a state machine that does the communication with the bus and the SRAM. The state machine will also
need to take care of the wait cycles, when communicating with the SRAM. As the SRAM data bus is 16-bits wide,
the data received from the wishbone bus will be written to SRAM in 2 accesses. First the lower 16 bits and then the
upper 16 bits will be written. Similarly, 2 accesses will be made to retrieve the 32 bits of data on an SRAM read.
The state machine needs to take care of the wait cycles (at least 4 cycles) for each individual access.

The SRAM writer will continuously write to memory by incrementing the address. The data it should write to
memory should be the address. Thus, write “00000000” to address “000000”, “00000004” to address “000004”
and so on. The memory writer will be a module on the Wishbone bus. Note, that since the default Wishbone bus
arbiter does not guarantee fairness, you will need to write code in the memory writer module to force it to release
the bus so that the writer does not take over the bus and not allow the reader module to get access to the bus.

Finally, the SRAM reader will continuously read from memory and display the data on the 7-segment display.
Since we need to be able to read the 7-segment display with a human eye, you will need to slow down the reading
module so that it can display a new piece of read data every 2 seconds. For one second, the display will show the
high-16 bits of the 32-bit data, and the next second it will show the lower 16 bits. Thus, the memory module will
be reading from the SRAM module and then writing to the 7-segment module.




The library modules you need for this lab are,

clock_divider
wb_intercon
wb_arbiter
wb_segled

o O O O O

word2leds (which uses hex2led and char_led_control)



