ECE 4401 (Fall 2014)
Lab 4 — Wishbone Bus

In this lab you will design a Wishbone bus interface to your 7 segment LED display and the switches. You
will use the given Wishbone bus controller and design master and slave interfaces for the bus. The rest
of this handout describes the bus controller.

Wishbone Bus:

Wishbone is an open SoC bus that can be used in semiconductor IP cores. The bus can be configured as
point-to-point or a shared interconnection network. In this lab, we will assume shared bus architecture.
The wb_intercon module provides the bus to which you will connect your design modules. The bus
supports 4 masters and 4 slaves (this can be easily modified by changing the wb_intercon.vhd file).
Arbitration between masters is done using a round-robin scheduler. Arbitration is not fair - in other
words, if a master does not relinquish the bus, no other masters can get control of the bus. The entity
declaration for wb_intercon is as follows:

entity wb_intercon is

generic (num_addr_bits : positive := 32; num_data_bits : positive := 32);

port (
ACK_I_M: out std_logic_vector (3 downto 0);
ACK_0_S: in std_logic_vector (3 downto 0);
ADR_0_MO: in std_logic_vector(num_addr_bits-1 downto 0);
ADR_O_M1: in std_logic_vector(num_addr_bits-1 downto 0);
ADR_0_M2: in std_logic_vector(num_addr_bits-1 downto 0);
ADR_0O_M3: in std_logic_vector(num_addr_bits-1 downto 0);
ADR_I_S: out std_logic_vector (num_ addr bits-1 downto 0);
CYC_0 _M: in std_logic_vector (3 downto 0);
DAT_0O_MO: in std_logic_vector(num_data_bits-1 downto 0);
DAT_O_M1: in std_logic_vector(num_data_bits-1 downto 0);
DAT_0O_M2: in std_logic_vector(num_data_bits-1 downto 0);
DAT_O_M3: in std_logic_vector(num_data_bits-1 downto 0);
DWR: out std_logic_vector(num data bits-1 downto 0);

DAT_0_SO: in std_logic_vector(num_data_b1ts 1 downto 0);
DAT_O_S1: in std_logic_vector(num_data_bits-1 downto 0);
DAT_0_S2: in std_logic_vector(num_data_bits-1 downto 0);
DAT_0_S3: in std_logic_vector(num_data_bits-1 downto 0);

DRD: out std_logic_vector(num_data bits-1 downto 0);
STB_I_S: out std_logic_vector (3 downto 0);
STB_0_M: in std_logic_vector (3 downto 0);
WE_O0_M: in std_logic_vector (3 downto 0);
WE: out std_logic;
CLK: in std_logic;
RST: in std_logic
)

end entity wb_intercon;

Master modules will have entity declarations of the following form:

entity master is
Port (clk_i : in std_logic;

rst_i : in std_logic;
adr_o : out std_logic_vector (31 downto 0);
dat_i : in std_logic_vector (31 downto 0);
dat_o : out std_logic_vector(31l downto 0);
ack_i : in std_logic;
cyc_o : out std_logic;
stb_o : out std _logic;
we o : out std _logic);

end master;

The slave modules will have entity declarations of the following form:

entity wb_slave is
Port (clk_i : 1in std_logic;

rst_ i : in std_logic;
adr_i : in std_logic_vector (31 downto 0);
dat_i : in std_logic_vector(31 downto 0);
dat_o : out std_logic_vector(31l downto 0);
ack_o : out std_logic;
stb_i : in std_logic;
we_ i : in std_logic);

end wb_slave;

Note that additional signals to connect to the FPGA pins can be added to the master or slave if
necessary. Each master or slave module is connected to the wb_intercon module. The DWR signal from
the wb_intercon module connects to the DAT_I signal on the slaves and the DRD signal from the
wb_intercon module connects to the DAT_|I signal on the master.

Bus Cycle Description:

When a master wants to read from a slave, it places the address of the slave on the ADR_O lines. The
slave is addressed using the top two bits of the address. Thus address 0x00000000 refers to slave 0,
address 0x40000000 to slave 1, 0x80000000 to slave 2, and 0xCO000000. In addition to placing the
address, the master will assert its CYC_O signal to indicate arbitration should start if needed, and STB_O
signal to indicate that it is starting a data cycle. The master will also set its WE_O to “0” to indicate a
read and “1” to indicate a write request. The slave will know that it is being addressed when its STB_|
signal becomes active. Since the WE_I line will be “0”, it is a read and the slave will put the data on the
DAT_O lines and assert the ACK_O signal. Upon receipt of the ACK_I signal, the master signals the end
of data cycle by de-asserting the STB_O signal. The bus can be released to another master by de-
asserting the CYC_O signal.

A write cycle is very similar. The master places the address for the slave on the ADR_O signals and
asserts its CYC_O signal to indicate arbitration should start if needed and its STB_O line to indicate that
it is starting a data cycle. The master also sets WE_O to “1” to indicate a write. The slave will know that

it is being addressed when its STB_| signal becomes active. Since the WE_|I signal will be “1”, it is a write
and the slave will latch the data on its DAT_| signals and assert the ACK_O signal when the write is
complete. Upon receipt of the ACK_I signal, the master signals the end of the data cycle by de-asserting
the STB_O signal. The bus is released for another master by de-asserting the CYC_O signal.

Goals For This Week:

Get started with the Wishbone bus, by designing two simple slave interfaces and one simple master
module, as shown in figure below.

«—> Slave

Master #—> Wishbone LED Displa
Bus —> Slave

(Switches)

Design Wishbone bus interfaces for the switches and for the 7-segment LED display. Whenever the
master module performs a read from the switch module, it should return the data on the switches in the
lower eight bits of the DAT_O signal. Writing to the switch module is not supported. For this part you
will update the wh_swts.vhd file.

Likewise, whenever the master module writes to the 7-segment LED module, the lower 16 bits of DAT _|
must be displayed on the four 7-segment LEDs. In this slave module, reads are not supported. For this
part you will update the wb_segled.vhd file.

Finally, you will need to design the master module functionality that reads from the switch slave module
and writes the output to the 7-segment LED display slave module. For this part you will update the
reader.vhd file.

Notes:

- The library modules you need for this lab are,
clock_divider

o wb_intercon
o wb_arbiter
o word2leds (which uses hex2led and char_led_control)

Signal Width | Description
CLK 1 System clock
RST 1 System reset
ACK O S 4 When asserted, indicates the termination of a normal bus cycle
ADR O MO |32 Used to pass binary address — Master 0
ADR O M1 |32 Used to pass binary address — Master 1
ADR O M2 |32 Used to pass binary address — Master 2
ADR O M3 |32 Used to pass binary address — Master 3
CYC O M 4 The cycle output, when asserted, indicates Fhat a valid bus cycle is in
- - progress. The signal is asserted for the duration of all bus cycles
DAT O MO |32 Used to pass binary data — Master 0
DAT O M1 |32 Used to pass binary data — Master 1
DAT O M2 |32 Used to pass binary data — Master 2
DAT O M3 |32 Used to pass binary data — Master 3
DAT O SO |32 Used to pass binary data — Slave 0
DAT O S1 32 Used to pass binary data — Slave 1
DAT O S2 32 Used to pass binary data — Slave 2
DAT O S3 32 Used to pass binary data — Slave 3
It indicates a valid data transfer cycle. It is used to qualify various
STB O M 4 other signals on the inte‘rface. The SLAVE asserts either thg [ACK I],
- = [ERR I] or [RTY I] signals in response to every assertion of the
[STB O] signal
It indicates whether the current local bus cycle is a READ or WRITE
WE O M 4 cycle. The signal is negated during READ cycles, and is asserted
during WRITE cycles
It indicates whether the current local bus cycle is a READ or WRITE
WE 1 cycle. The signal is negated during READ cycles, and is asserted
during WRITE cycles
ACK I M 4 When asserted, indicates the termination of a normal bus cycle
ADR I S 32 Used to pass binary address — All SLAVES
DWR 32 Connects to data_in of SLAVES
DRD 32 Connects to data in of MASTER
When asserted, indicates that the SLAVE is selected. A SLAVE shall
STB I S 4 respond to other WISHBONE signals only when this [STB I] is
asserted
IRQ O 1 Used to interrupt another module (master)
IRQ I 1 Used to receive an interrupt from another module (slave)

