## ECE 3421 – VLSI Design and Simulation, Spring 2013

## **Homework Assignment 1**

1. Determine the current  $I_{ds}$  for the following cases. Assume the standard model not including short channel effects and channel-length modulation. Unless specified explicitly, the body (substrate) of MOS transistor is connected to the source, i.e.,  $V_{sb} = 0$  thus no body effects. Some of device parameters are given below:

$$\begin{split} \mathbf{W}_n &= 1 \ \mu\text{m}, \ \mathbf{W}_p = 2 \ \mu\text{m}, \ \mathbf{L}_n = \mathbf{L}_p = 0.25 \ \mu\text{m} \\ \gamma_n &= 0.82 \ \mathbf{V}^{1/2}, \ \gamma_p = -0.82 \ \mathbf{V}^{1/2} \\ \phi_{sn} &= -1.6 \ \mathbf{V}, \ \phi_{sp} = 1.6 \ \mathbf{V} \\ \mathbf{V}_{tn0} &= 0.6 \ \mathbf{V}, \ \mathbf{V}_{tp0} = -0.6 \ \mathbf{V} \\ \mu_n &= 600 \ \text{cm}^2/\text{Vs}, \ \mu_p = 280 \ \text{cm}^2/\text{Vs}, \ \text{Cox} = 7 \times 10^{-8} \ \text{F/cm}^2 \end{split}$$



- **2.** A CMOS inverter has a  $V_{DD}$  of 5V and  $V_{SS}$  of 0V. Assume that  $V_{tn} = -V_{tp} = 0.8$ V and other parameters are similar to one used in question 1. Also assume the standard model not including short channel effects and channel-length modulation.
- (a) What width(s) should we use for either or both transistors to accomplish a switching threshold of 2.5V? Explain why this inverter is considered balanced?
- (b) We want to decrease the switching threshold to 1.5V by change the width(s) of either or both of the transistors. What should we do? Why is this inverter considered imbalanced?
- 3. What is the maximum drain current that can flow in a CMOS inverter with the following parameters:  $V_{DD} = 5 \text{ V}$ ,  $V_{tn} = 1 \text{ V}$ ,  $V_{tp} = -1.2 \text{ V}$ ,  $\beta_n = 100 \,\mu\text{A/V}^2$ ,  $\beta_p = 40 \,\mu\text{A/V}^2$ .
- **4.** Derive an expression for the switching threshold  $(V_M)$  in a resistive-load inverter in terms of  $V_{DD}$ ,  $R_L$ ,  $\beta_n$ , and  $V_T$ .
- **5.** Consider the inverter shown in figure below, such that  $V_{OL} = 0.6V$ . The enhancement-type NMOS driver transistor has the following parameters:  $V_T = 1.0V$ ,  $\gamma = 0.2 V^{1/2}$ ,  $\lambda = 0$ ,  $\mu_n C_{ox} = 22 \mu A/V^2$ .



- (a) Determine the NMOS aspect ratio, W/L
- (b) Determine  $V_{IL}$  and  $V_{IH}$
- (c) Determine noise margins  $NM_L$  and  $NM_H$