
PA0: 4-Stage Pipelining

8

• PA0 only
supports ADDI
instruction
type

• Does not
support
handling of
instruction
dependencies
on data and
control flow

• Does not
support
structural
hazards

process_instruction in sim_core.c
• while loop runs

until terminate flag
is asserted

• Pipeline stages are
updated in each
cycle in reverse
order

• Once all *_n state
structs are updated
for all pipeline
stages, the state
structs are updated

9

void process_instructions() {

int terminate = 0;
unsigned int committed_inst;
while (terminate != 1) {

/* Update pipeline state */
committed_inst = writeback();
ex_out_n = execute();
decode_out_n = decode();
fetch_out_n = fetch();

/* Increment the total instruction counter */
if (ex_out.inst != 0x00000013){
instruction_counter++; }
/* Increment the cycle counter */
cycle++;

if (registers[0] != 0) {
terminate = 1; // set terminate flag when $zero is updated
}

/* Update state for next cycle */
pc = pc_n;
fetch_out = fetch_out_n;
decode_out = decode_out_n;
ex_out = ex_out_n;
wb_out = wb_out_n;

}

PA0: Fetch stage

• Fetch the instruction from memory[pc/4]
• Advance PC by +4
• Return the fetch_out_n state struct, which is passed to the Decode stage

in the next cycle
– See process_instructions function in sim_core.c for how the pipeline stages

are processed across cycles

10

/**
* Fetch stage implementation.
*/
struct State fetch() {

 fetch_out_n.inst = memory[pc / 4];
 fetch_out_n.inst_addr = pc;
 advance_pc(fetch_out_n.inst_addr + 4);

 //Return the instruction
 return fetch_out_n;
}

PA0: Decode stage

• In a given cycle, the current state of fetch_out state struct is available for the
decode stage to process

• decode_fields function in decode_fields.h the decoding of the RISC-V instructions
to populate
– opcode, funct3, funct7 fields
– rd, rs1, rs2 register specifiers
– imm field for the appropriate instruction type… follow the switch-case statement to see an

example of decoding
– alu_in1 and alu_in2 are specific for the ADDI instruction that is supported in PA0. For PA1, this

logic will need to take into account the appropriate instruction type to populate these fields
• Return the decode_out_n state struct, which is passed to the Execute stage in the

next cycle
– See process_instructions function in sim_core.c for how the pipeline stages are processed

across cycles

11

struct State decode() {
 // read the fetch_out state and start processing decode functionality
 decode_out_n = fetch_out;
 decode_fields(&decode_out_n);
 decode_out_n.alu_in1 = registers[decode_out_n.rs1];
 decode_out_n.alu_in2 = decode_out_n.imm;
 return decode_out_n;
}

PA0: Execute stage

• In a given cycle, the current state of decode_out state struct is
available for the execute stage to process

• alu_in1 and alu_in2 fields from the state struct that were populated
in the decode stage are operated on using the ALU and the alu_out
state filed is populated

• Return the ex_out_n state struct, which is passed to the writeback
stage in the next cycle
– See process_instructions function in sim_core.c for how the pipeline

stages are processed across cycles

12

struct State execute() {
 // read the decode_out state and start processing execute stage's functionality
 ex_out_n = decode_out;
 ex_out_n.alu_out = ex_out_n.alu_in1 + ex_out_n.alu_in2;
 return ex_out_n;
}

PA0: Writeback stage

• In a given cycle, the current state of ex_out state struct is available
for the writeback stage to process

• alu_out state filed is used to write the ADDI output in the register
file using the rd destination register from the state

• Return the wb_out_n.inst state field, which represents the
commited_inst in the sim_core.c

13

unsigned int writeback() {

 wb_out_n = ex_out;
 registers[wb_out_n.rd] = wb_out_n.alu_out;
 return wb_out_n.inst;
}

