Struct Member

Description

inst fetched instruction

inst_addr address of instruction

opcode opcode field

funct3 3-bit function field

funct7 7-bit function field

rd destination register specifier

rsi source 1 register specifier

rs2 source 2 register specifier

imm immediate value

mem_buffer memory data for LW /SW instructions
mem_addr memory address for LW /SW instructions
br_addr target address for B-Type instructions
link_addr return address for JAL/JALR instructions
alu_inil first ALU operand

alu_in2 second ALU operand

alu_out ALU output

ICONN

PAO: 4-Stage Pipelining

PAO only
supports ADDI
instruction

type

Does not
support
handling of
instruction
dependencies
on data and
control flow

Does not

support
structural
hazards

process _instruction in sim_core.c

void process_instructions() {

int terminate = 0;
unsigned int committed_inst;
while (terminate != 1) {

/* Update pipeline state *x/
committed_inst = writeback();
ex_out_n = execute();
decode_out_n = decode();
fetch_out_n = fetch();

/* Increment the total instruction counter x/
if (ex_out.inst !'= 0x00000013){
instruction_counter++; }

/* Increment the cycle counter */

cycle++;

if (registers[0] !'= 0) {
terminate = 1; // set terminate flag when $zero is updated

}

/* Update state for next cycle */
pC = pc_n;

fetch_out = fetch_out_n;
decode_out = decode_out_n;

ex_out = ex_out_n;

wb_out = wb_out_n;

while loop runs
until terminate flag
Is asserted

Pipeline stages are
updated in each
cycle in reverse
order

Once all * _n state
structs are updated
for all pipeline
stages, the state
structs are updated

PAO: Fetch stage

/**

* Fetch stage implementation.
*/
struct State fetch() {

fetch out n.inst = memory[pc / 4];

fetch _out n.inst _addr = pc;
advance_pc(fetch_out_n.inst_addr + 4);

//Return the instruction
return fetch out n;

* Fetch the instruction from memory[pc/4]
 Advance PChy +4

* Return the fetch_out_n state struct, which is passed to the Decode stage
in the next cycle

— See process_instructions function in sim_core.c for how the pipeline stages

are processed across cycles

PAO: Decode stage

struct State decode() {
// read the fetch_out state and start processing decode functionality
decode out _n = fetch_ out;
decode_fields(&decode out n);

decode_out_n.alu_inl = registers[decode_out_n.rsl];
decode out n.alu in2 = decode_out n.imm;
return decode_out_n;

* Inagiven cycle, the current state of fetch_out state struct is available for the
decode stage to process

 decode_fields function in decode_fields.h the decoding of the RISC-V instructions
to populate
— opcode, funct3, funct? fields
— rd, rs1, rs2 register specifiers

— imm field for the appropriate instruction type... follow the switch-case statement to see an
example of decoding

— alu_inl and alu_in2 are specific for the ADDI instruction that is supported in PAO. For PA1, this
logic will need to take into account the appropriate instruction type to populate these fields

 Return the decode_out_n state struct, which is passed to the Execute stage in the
next cycle
— See process_instructions function in sim_core.c for how the pipeline stages are processed

across cycles

PAO: Execute stage

struct State execute() {
// read the decode out state and start processing execute stage's functionality

ex_out _n = decode out;

ex_out n.alu out = ex out n.alu inl + ex _out n.alu in2;
return ex_out_n;

* Inagiven cycle, the current state of decode_out state struct is
available for the execute stage to process

 alu_inl and alu_in2 fields from the state struct that were populated
in the decode stage are operated on using the ALU and the alu_out
state filed is populated

 Return the ex_out_n state struct, which is passed to the writeback
stage in the next cycle

— See process_instructions function in sim_core.c for how the pipeline
stages are processed across cycles

UCONN

PAO: Writeback stage

unsigned int writeback() {

wb_out_n = ex_out;

registers[wb_out n.rd] = wb_out _n.alu out;
return wb_out n.inst;

}

* Inagiven cycle, the current state of ex_out state struct is available
for the writeback stage to process

e alu_out state filed is used to write the ADDI output in the register
file using the rd destination register from the state

 Return the wb_out_n.inst state field, which represents the
commited_inst in the sim_core.c

UCONN

